Amelioration of Skin and Kidney Disease in a Spontaneous Murine Lupus Model via CD6 Modulation

Samantha A. Chalmers1, Sayra J Garcia1, Rajalakshmy Ayilam Ramachandran2, Chandra Mohan2, Lea Herlitz3, Jeanette Ampudia4, Cherie Ng, PhD4, Stephen Connelly, PhD4, and Chaim Putterman1

1Albert Einstein College of Medicine, 2University of Houston, 3Cleveland Clinic, 4Equillium, Inc.

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that can affect multiple organ systems, including the kidneys, skin, and brain. T cells are an important mediator in this end organ damage. CD6 is a co-stimulatory receptor, predominantly expressed on T cells, which binds with activated leukocyte cell adhesion molecule (ALCAM), a ligand expressed on antigen presentation cells and various epithelial and endothelial tissues. This signaling pathway is vital for T cell activation, proliferation, differentiation and trafficking. We found increased expression of both CD6 and ALCAM in the kidneys of MRL/lpr mice (a spontaneous model of SLE) versus healthy control B6 mice. In a separate experiment, female MRL/lpr mice were aged to 9-10 weeks of age, at which point we began treating with either anti-CD6 antibody (60 ug/dose, intraperitoneally twice per week), isotype control (60 ug/dose, twice per week), or cyclophosphamide (25 mg/kg, once per week). We also included a no treatment group and a group of MRL/MpJ mice, a congenic healthy control strain. Mice treated with anti-CD6 show lower levels of proteinuria and BUN (p<0.05), improved survival rates, and decreased renal pathology compared to isotype control mice. Flow cytometry revealed decreased numbers of activated and effector T cells within the kidneys of anti-CD6 treated mice compared to isotype control mice. While there was no difference in anti-DNA levels, anti-CD6 treatment significant improved the spontaneous skin lesions associated with disease progression. Overall, these results indicate that targeting CD6-ALCAM interactions may have promising therapeutic potential within the context of different end organ pathologies within lupus.